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Abstract

A new k-s eddy viscosity model, which consists of a new model dissipation rate equa-

tion and a new realizable eddy viscosity formulation, is proposed in this paper. The new

model dissipation rate equation is based on the dynamic equation of the mean-square

vorticity fluctuation at large turbulent Rcynolds number. The new eddy viscosity formu-

lation is based on the realizability constraints; the positivity of normal Reynolds stresses

and Schwarz' inequality for turbulent shear stresses. We find that the present model with

a set of unified model coefficients can perform well for a variety of flows. The flows that

are examined include: (i) rotating homogeneous shear flows; (ii) boundary-free shear flows

including a mixing layer, planar and round jets; (iii) a channel flow, and flat plate bound-

ary layers with and without a pressure gradient; and (iv) backward facing step separated

flows. The model predictions are compared with available experimental data. The results

from the standard k-E eddy viscosity model are also included for comparison. It is shown

that the present model is a significant improvement over the standard k-s eddy viscosity

model.



1. Introduction

The main task in developing a k-6 eddy viscosity model is to provide an appropriate

eddy viscosity formulation and a model dissipation rate equation. The standard k-e eddy

viscosity model, which is widely used in computational fluid dynamics, performs quite

well for boundary layer flows but not for flows with a high mean shear rate or a massive

separation, because in these cases the eddy viscosity is overpredicted by the standard

eddy viscosity formulation. In addition, the standard model dissipation rate equation

does not always give the appropriate length scale for turbulence. For example, the well-

known anomaly about the spreading rate of a planar jet versus a round jet is mainly due

to the model dissipation rate equation. In order to improve the ability of the k-_ eddy

viscosity model to predict complex turbulent flows, these deficiencies in the existing k-e

eddy viscosity model should be removed. The purpose of this study is to propose new

formulations for both the model dissipation rate equation and the eddy viscosity that can

significantly improve the performance of the k-_ eddy viscosity model.

The exact dissipation rate equation can be written as,

2v

- 2v_U_,k_ - 2v_,ku_U_,_ - 2L'_-_,,]-u_,kU_,k

- 2vui,kuj,_uij - 2L'2U_,jt, Ui,:ik (la)

where e = _,uijui,j, e' = uuijuij and ( ),t, ( ),i stand for the derivatives with respect to

t and x_. All the terms on the right hand side of Eq. (la), except the viscous diffusion

term ve,li, are new unknowns. Thus, they must be modeled before this equation can be

used for applications. Modeling of these new unknowns, which are related to the small

scales of turbulence, is extremely difficult. Therefore, in the literature, Eq. (la) is usually

not considered as a useful equation to work with. Instead, one creates a simple model

dissipation rate equation which has a structure similar to that of the turbulent kinetic

energy equation. That is, the dissipation rate equation also has generation and destruction

terms which are assumed to be proportional to the production and dissipation of turbulent

kinetic energy divided by the large eddy turn-over time, k/E. With this assumption, the

resulting model dissipation rate equation can be written in the following form:

g2

e - Ce2-_ (lb)+ = - -



Eq.(lb) is the standard form of the model dissipation rate equation which has been widely

used in various turbulence closure schemes. In addition, several modified versions of

Eq.(lb) have also been proposed for different applications, for example, in near-wall turbu-

lent flows 1-4 and in rotating turbulent flows 5. Recently, Lumley s proposed a dissipation

rate equation based on the concept of non-equilibrium spectral energy transfer due to the

interactions between eddies of different sizes. A new transport equation for an inverse time

scale has also been suggested in conjunction with his new E equation which is of a different

form from that of Eq.(lb). This model mimics the physics of the statistical energy transfer

from large eddies to small eddies and was successful in the prediction of some turbulent

free shear fiows 6. In the present study, we explore the possibility of deriving a new model

form for the dissipation rate equation which is not only physically more related to the orig-

inal _ equation but also simpler and more robust than the standard dissipation equation

(lb). This is achieved by first developing a model equation for the dynamic equation of the

mean-square vorticity fluctuation wiwi. Once the dynamic equation for _ is modeled,

a model dissipation rate equation can be readily obtained by using the relation E = vwiwi

at large Reynolds number.

The standard eddy viscosity formulation for incompressible turbulence is

2

-u uj = +  T(U ,j + (2a)

c. = 0.09 (2c)

It has been known for long that this model will become non-realizable in the case of large

mean strain rate (e.g., Sk/c > 3.7 where S = _), because the normal stresses

can become negative and Schwarz' inequality for shear stresses can be violated. To insure

realizability, the model coefficient C_, must not be a constant and must be related to the

mean strain rate. In fact, the experiments on boundary layer and homogeneous shear flows

also show that the value of C_, is quite different in each case. For example, C, is about

0.09

0.05

new

this

in the inertial sublayer of a flat boundary layer in which Sk/e = 3.3, and C_ is about

in a homogeneous shear flow of Sk/e = 6. According to the above considerations, a

formulation for C,, which was suggested by Reynolds 7 and Shill et aI. s, is adopted in

paper.

In the following sections, we will first describe the development of a new model dis-



sipation rate equation, and then the development of the new eddy viscosity formulation.

The performance of the new model will be examined in a variety of flows which include

rotating homogeneous shear flows, boundary-free shear flows (e.g., a mixing layer, planar

and round jets), a channel flow, boundary layers with and without pressure gradients, and

backward facing step separated flows.

2. Development of the new dissipation rate equation

2.1 Dynamic equation for wiwi

The exact equation for wlw_ is

OJiOJi " TT. ( OJiOJi _ •

--y-),t + v  -y-m
•wiwi. 1

= v(--5- -
+ - + w- U ,j

+ wiwjuid - uwi,jwi,j (3)

where ui and Ui are the fluctuating and mean velocities, and wi and fli are the fluctuating

and mean vorticities which are defined by

wi = eljku_,j, _i = eiikUk,j (4)

and

1V. 1

Tennekes and Lumley 9 clearly described the physical meaning of each term in Eq.(3). The

first two terms on the right hand side represent the viscous transport and the turbulent

transport of bJ_w_, respectively. The third term is the source term which is produced by

fluctuating vortex stretching and mean vorticity. This term also appears in the equation

for 9li_i with the same sign, hence, it will either increase or decrease _i_i and wiwi

simultaneously. The fourth term represents the vorticity exchange between wiwi and _'li_i,

because it appears with opposite sign in the equation for _i_i. The fifth term represents

the source produced by mean vortex stretching. The sixth and seventh terms are the

production due to fluctuating vortex stretching and the dissipation due to the viscosity of

the fluid, respectively. Tennekes and Lumley have shown that, at sufficiently high turbulent

Reynolds numbers, the sixth and the seventh terms in Eq.(3) are the largest terms and are

of order:
--- 7./,3 _3/2 \

wiwju_,j, uwi,jwi,j ._ O[,--_.ut )



All the remaining terms on the right hand side, except the second term, are smaller, either

of order (u3/l _) or (u/1)_R_. In the above analysis, "O" denotes the order of magnitude,

Rt - ul/u is the turbulent Reynolds number, and u and l are the characteristic velocity

and length scales of turbulence, respectively. If the terms of order (u s/l 3)Rt or larger were

kept in Eq.(3), then the evolution of _viw_ would be described by the following equation,

(_i0)i _ TT. ( Wiogi 1

j,_+ v_- V),_ = -_(_),j + w,_ju_,j- .w_.j_,,j (5)

As pointed out by Tennekes and Lumley, at very large Reynolds numbers, Eq.(5) becomes,

w_wjui,5= vwi,_w_,j (6)

Or equivalently, production equals dissipation. This relation indicates that the term

wlwjui,j is always positive. In addition, it indicates that there is a new length scale

created by the vortex stretching which is related to the derivative of fluctuating vorticity.

The vortex stretching tends to reduce the size of eddies and to create a broad spectrum of

eddy sizes. However, this process must end at a certain level of eddy size because of the

smoothing effect of viscosity. We expect that the terminal eddy size is the Kolmogorov

microscale which corresponds to the length scale for the derivative of fluctuating vorticity

wi,j. This can be easily verified from Eq.(6).

2.2 Modeling of the dynamic equation for wiwi

Modeling of wiwjui,j.

wiwj

then

We first define a fluctuating anisotropic tensor bit using

wiwj 1 _ .
b_ = _,:,.,,_ -_ ,_ (7)

,_iwju_,_= b'5w_wkui,j (8)

We expect that the vortex stretching tends to align vortex lines with the strain rate and

that the anisotropy b_ is mainly due to the anisotropy of the fluctuating strain rate; hence,

the anisotropy b_ may be assumed to be proportional to the strain rate sij. That is,

where

sij
b,3 _ --, (91

8

s = (2s_js_ff/:, s_j = (u_,j + u_,_)/2
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This leads to

wiwyui,j o¢ WkWk iiSi Ui"---'---_0¢ w_w_ S (10)
8

If we further assume that w_wk and (2sijso) 1/2 are well correlated, we may write

w_w_ui,_ 0¢wkwk ¢_ (II)

Noting that wiwi = 2_ at large Reynolds numbers, we may also write

wiwjul,j o¢ wkwk _-_Wi -- -WkWk WiWi (12)

Eqs.(ll) and (12) both indicate that the model for wiwjui,j is of order (u3/t3)R_/2 as it

should be.

Modeling of wiwjui,j - _'wi,jwi,j. Eq.(5) indicates that wiwjui,j - _'wi,jwid

must be of order (u_/£3)Rt, because that is the order of the magnitude for the other

terms in Eq.(5). Therefore, the model of -uwidwi,j must cancel wi, wk ¢_sij (or

iv_wk wiwi/_) in such a way that their difference is smaller than w_wk _sij (or

wkwt, w_w_/_) by an order of p_/2. This suggests that the sum of these two terms can

be related to the following two terms:

wkw} -wiwi (13)
w_w_ S, _ +

V

since both the ratio of s to S and the ratio of k/u to _ are of order R_/2. Here,

k(_ u 2) denotes the turbulent kinetic energy and S is the mean strain rate (_).

As a result, the dynamic equation for fluctuating vorticity can be modeled as

wiwi. U / wiwi _ 1
--5-- )'_+ j'--T ''j = --2(_)'_ + Cl_-_S

WkWk WiWi

V

(14)

Note that the denominator of the last term in Eq.(14) should be k/u for large Reynolds

number turbulence since the term _ is negligible compared to k/u._However, we keep

it there in case k vanishes somewhere in the flow field to prevent unnecessary singularity.

This also reflects the fact that the parent term of the model, Eq.(12), shows no singularity



anywhere in the flow field. It should also be pointed out that the sum of last two terms

in Eq.(14) models the last two terms in Eq.(5) as a whole and should not be viewed as a

model for either individual term.

2.3 Modeling of the dissipation rate equation

Noting that at large Reynolds number _ = _'wiwi and multiplying Eq.(14) by _, we

readily obtain a modeled dissipation rate equation,

e,, + uj e,j = -(uje'),j + E - c2
g2

k + (15)

The model coefficients, C1 and C2, are expected to be independent of the Reynolds number

as the Reynolds number becomes large. We note that C1 and C2 may be affected by solid

body rotation imposed on turbulence through the reduction of fluctuation vortex stretch-

ing, wiwjuij, as was shown by BardinaS; however, this effect is rather weak compared to

the other mechanisms. For example, Reynolds stresses will first be substantially affected

by rotation and result in a substantial change of the turbulent field, say k, as shown in

the calculation of the rotating homogeneous shear flows in section 4.1. This will also affect

the evolution of e through, say, k. The signs of C1 and C2 can be easily determined. For

example, in a decaying grid turbulence, only the last term on the right hand side of Eq.(15)

is non-zero and must be negative, hence C2 must be positive. For the case of homogeneous

shear flow, both the turbulent kinetic energy and its dissipation rate increase with time so

that the "source" term in Eq.(15) must be positive, hence C1 must be positive. In fact,

these two types of flows l°'n will be used for determining the coefficients C1 and C2.

The difference between the present model dissipation rate equation, Eq.(15), and the

standard model dissipation rate equation, Eq.(lb), is the "source" term. The Reynolds

stresses do not appear in Eq.(15). Consequently, the present model dissipation rate equa-

tion will be more robust than the standard model dissipation rate equation when it is

used in conjunction with second-order closure schemes, since S normally behaves better

than the Reynolds stresses in numerical calculations, especially for cases with poor initial

conditions. In addition, the present form of the "production" term is similar to that pro-

posed by Lumley s which is based on the concept of spectral energy transfer. We believe

that the present form of the model dissipation rate equation describes the turbulent vortex

stretching and dissipation terms more appropriately.

7



Eq.(15) can be applied in conjunction with any level of turbulence closure; however,

the turbulent transport term (_-_ui),i needs to be modeled differently at different levels of

turbulence closure. Here, we apply Eq.(15) to a realizable eddy viscosity model which will

be described in the next section, and where (6-_ui),i is modeled as

=

The model coefficients C1, C2 and ae will be determined later.

3. Realizable eddy viscosity model

(16)

u__>o

uau_2 < 1

-

In the formulation of Shih et al. s,

(a -- 1,2,3)

(a = 1,2,3;8- 1,2,3)

Here the coefficient C_ is not a constant. The experimental as well as DNS data on the

inertial sublayer of a channel or boundary layer flow suggest that C_ = 0.09. On the

other hand, for a homogeneous shear flow, C_ = _____/_k ov which is about 0.05 from the/e _y

experiment of Tavoularis and Corrsin n. Based on the realizability conditions:

(18)

Reynolds _ and Shih et al. s proposed the following formulation for the coefficient of Cu:

1

Cu = Ao + A_U (*)k-
E

(19)

U(*) = _f s_i&i + _

_'lij = flij - 2eijkwk

flij -- flij - eij_w_

(20)

Shih et al. s proposed a realizable Reynolds stress algebraic equation model. Its linear

form represents an isotropic eddy viscosity model:

2 (17.1)
-_uj = _,T(U_,_+ U_,_)- -_k&_

k2
_ (17.2)

UT -- Cf * g



m

where _ij is the mean rotation rate viewed in a rotating reference frame with the angular

velocity wk. The parameter A8 is determined by

A8 = V_cos ¢,

W- SijSj_Sk_
_3

1

¢ = _arccos(v_W)
(21)

Calibration of the model coefficient A0. The new eddy viscosity formulation

of Eqs.(17), (19), (20) and (21) satisfies the realizability constraints Eq.(18), and hence is

a realizable model. The only undetermined coefficient is A0. If we assume for simplicity

that Ao is a constant, then the value of A0 can be calibrated by one of the simple flows,

such as a homogeneous shear flow or a boundary layer flow. Here, we choose a boundary

layer flow in hope that the model will be able to reproduce the log-law of the inertial

sublayer. This leads to A0 = 4.0 which corresponds to C, = 0.09 in the inertial sublayer.

For the homogeneous shear flow of Tavoularis and Corrsin 11, Eq.(19), with A0 = 4.0, gives

Cu - 0.06 which is much closer to the experimental value of 0.05 than that of the standard

C_, = 0.09. The component of the anisotropy b12 (_-_/2k) for both the flows is listed in

Table 1 which shows that the present form of C_, also produces reasonable b12 compared

to the standard form of C_.

Table 1. Anisotropy component b12

exp. standard present

boundary layer b12 -0.149 -0.149 -0.149

-0.142 -0.274homoge, shear b12 -0.18

Now let us go back to the modeled k and ¢ equations,

k,, + r_jk,_= (_k,j),j - u-_V_,j - E

e,t + uje,j = ( e,j),j + ClS _ - 6"2k + v_

(22)

(23)

and determine the coefficients in Eq.(23).

• ~

Calibration of the model coefficients C1, C2 and a_. In decaying grid tur-

bulence at large Reynolds number, the equations for turbulent kinetic energy k and its



dissipation rate 6 are
g2

Let

the following equations can be obtained from the k and e equations:

n+l
a=n+l, C2=_ (24)

n

Experiments 1° show that the decay exponent n varies from 1.08 to 1.30. In this study we

choose C2 -- 1.9 which corresponds to n = 1.11. After C: is chosen, we use the experimental

data of homogeneous shear flow n and boundary layer flow to determine the coefficient C1

which is found to be a simple function of the time scale ratio of the turbulence to the mean

strain, 7:

where

C1 - max{0.43, 5 + rl }
(25)

Sk
rI = _, S = _/2Sij S_j

g

The value of ae will be estimated using the log-law in a boundary layer flow. The following

relations hold in the inertial sublayer:

U 1
- log u__yy + C

_r K V

-- 2 _u---_OU ,_,
--'l.KO ,_ U.r ,

oy

(26)

Analyzing the dissipation rate equation in the log-law region, we obtain

/¢2

ae = = 1.20 (28)
c2 cl

where the von Karman constant _ = 0.41. The model coefficients are summarized in Table

.

Table 2. Model coefficients

Uk Ue

1.0 1.2

C1

Eq.(25)

C2
1.9 Eq.(19)

Ao

4.0

10



4. Model applications

The results of turbulent flow calculations using the proposed new turbulence model are

shown in this section. These include (i) rotating homogeneous shear flows, (ii) boundary-

free shear flows, (iii) a channel flow and boundary layers with and without pressure gra-

dients, and (v) backward-facing step flows. The results of the present and the standard

k - _ models are compared with DNS, LES and experiments.

4.1 Rotating homogeneous shear flows

The comparisons are made with the large eddy simulation of Bardina et al. 5 for four

different cases of _/S (which are _/S=O.O, _/S=-0.50, _/S=0.25, and _/S=0.50). The

initial conditions in all these cases correspond to isotropic turbulence and eo/Sko = 0.296.

Figure 1 (a) compares the evolution of turbulence kinetic energy, normalized by its initial

value k0, with the non-dimensional time St for the case of f_/S -- 0.0. For this case both

the present and the standard k - e (denoted by ske hereafter) models show the trends

exhibited by LES, with the present model closer to the LES data. Figure 1 (b) shows

the comparisons for the case f_/S = 0.25. The LES shows that the growth rate of the

turbulence kinetic energy is increased over the no rotation rate case. The present model is

able to pick up this trend while the ske model does not. Figures 1 (c) and 1 (d) compare the

evolution of turbulence kinetic energy for two more cases of _2/S = 0.5 and _2/S = -0.5.

For the first of these cases the LES shows that the growth rate of the turbulence kinetic

energy is decreased over the no rotation rate case. The present model is able to pick up

this trend and although the agreement between the present model and the LES is not as

good as it is for the other cases, it still is a lot better than the ske model. For the case of

f_/S - -0.5 the ske model does not show the effect of rotation on turbulence as it gives

the same growth rate of turbulence kinetic energy as it did for the no rotation case, a result

which is already known. On the other hand the present model is in reasonable agreement

with the LES data as it shows the decay of the turbulence kinetic energy with time.

4.2 Boundary-free shear flows

Calculations using the present and the ske models were performed for a mixing layer,

a planar and a round jet. Figures 2, 3 and 4 show the comparisons of the self-similar

profiles from the model predictions and the various measurements for the mixing layer,

11



planar and round jets, respectively. In these figures, the profiles for the mean velocity the

Reynolds shear stress and the turbulent kinetic energy are presented. For the mixing layer,

the results are shown in a self-similar coordinate r/defined as

y - y0.5
rl =

Y0.9 - y0.1

where y0.1, Y0.5, and Yo.9 denote the locations where the ratio of the local mean velocity to

that of the free stream are 0.1, 0.5, and 0.9, respectively. Figure 2 shows that the mean

velocity profiles of the mixing layer predicted by either the present model or the ske model

agree well with experimental data of Pate112. The present model, however, gives better

predictions of the turbulent kinetic energy and the Reynolds shear stress distributions than

the ske model. This is especially true for their peak levels. The predictions for the planar

jet are shown in Figure 3. The model predictions are compared with the measurements

of Gutmark and Wyguanski 1_, Bradbury 14, and Hekestad 15. The predictions given by

both the present model and the ske model agree well with the experimental data. The

turbulent kinetic energy level at the jet centerline is slightly lower than the measured

values. For the round jet, the comparisons are made between the model predictions and

the measurements of Wygnanski and Fielder 16 and l:todi lr and are shown in Figure 4. The

profile distributions of the mean velocity predicted by the current model agree well with

the experimental data, while the ske model predicts a much wider distribution. Significant

improvement is also achieved in the prediction of the turbulent shear stress profile over the

ske model in terms of both the centerline level and the overall distribution. The calculated

spreading rates of these flows are compared with measurements and are shown in Table 3.

The present model yields better predictions than the ske model; especially, the well-known

spreading rate anomaly of planar and round jets (i.e., the measured spreading rate of a

round jet is always smaller than that of a planar jet, but the model prediction usually

contradicts the measurements) is removed completely.

Table 3. The spreading rates of turbulent free shear flows

Case measurement ske present

mixing layer 0.13-0.17 0.152 0.151

planar jet 0.105-0.11 0.109 0.105

round jet 0.085-0.095 0.116 0.094

12



4.3 Channel flow and boundary layer flows

Turbulent channel flow and boundary layer flows with/without pressure gradients

were calculated to test the performance of the present model for wall bounded flows. Since

the present model is proposed for turbulent flows away from the wall, the integration was

carried out down to y+ = 80, rather than to the wall, in the calculations. At y+ = 80,

DNS values were used as the boundary conditions for the turbulent channel flow and wall

functions were used for the turbulent boundary layer flows.

The velocity profile for 2D fully developed turbulent channel flow at Re_- -- 395 is

shown in Figure 5. This flow was calculated by Kim is using direct numerical simulation.

Both the present model and the ske model agree reasonably well with the DNS data. Figure

6 shows the skin friction coefficient for the flat plate boundary layers with the Reynolds

number up to Reo -" 16000. Here, comparison is made with the experimental results of

Wieghardt 19. Both the present model and the ske model give good agreement with the

experiments. Overall, the present model gives a slightly better prediction for boundary

layer development.

Figure 7 shows the results for the Herring and Norbury flow 2°, which is a boundary

layer flow under favorable pressure gradient. The present model gives compariable per-

formance to that of the ske model. The turbulent boundary layer under adverse pressure

gradient studied by Bradshaw 21 and the turbulent boundary layer under increasingly ad-

verse pressure gradient studied by Samuel and Joubert 22 were also calculated. The results

are shown in Figure 8 and Figure 9, respectively. In both cases, the present model gives

better predictions.

4.4 Backward-facing step flows

The performance of the present model for complex recirculating flows is demonstrated

through calculations for two backward-facing step flows, one (DS-case 2_) with smaller and

the other (KKJ-case 24) with larger step height, both of which have been extensively used

to benchmark calculations of separated flows. The calculations were performed with a

conservative finite-volume procedure. The convection terms of the governing equations

were discretized by a second-order accurate and bounded differencing scheme 25, and all

the other terms by the standard central differencing scheme. Sufficiently fine grids, with

13



201x 109 points in the DS-caseand 199x91 points in the KKJ-case, were usedto establish

numerical credibility of the solutions. The computational domain had a length of 50 step

heights, one fifth of which wasplaced upstream of the step. The experimental data were
used to specify the inflow conditions, the fully-developed flow conditions were imposed at

the outflow boundary, and the standard wall function approach 26 was used to bridge the

viscous sublayer near the wall. Table 4 shows the comparison of the reattachment lengths.

Figures 10-14 compare the skin friction, the pressure distribution along the bottom wall

and the mean velocity as well as the turbulent stress profiles at three downstream locations.

All the quantities were normalized by the step height h and the experimental reference

free-stream velocity U_f.

Table 4. Comparison of the reattachment point locations

Case measurement ske present

DS 6.26 4.99 6.02

KKJ 7=t= 0.5 6.35 7.50

The comparison of the size of the separation buble, the skin friction, and the pressure

coefficients suggest that the overall performance of the present model is better than that

of the ske model.

5. Concluding Remarks

A new k-_ eddy viscosity model is proposed in this paper. It consists of a new model

dissipation rate equation and a new realizable eddy viscosity formulation. The new model

dissipation rate equation is based on the dynamic equation for fluctuating vorticity. The

new eddy viscosity formulation described in Section 3 ensures realizability and contains,

as well, the effect of mean rotation on turbulence stresses. The present model is tested

in various benchmark flows including: rotating homogeneous shear flows; boundary-free

shear flows; channel and flat boundary layer flows with and without pressure gradients;

and backward facing step flows. The results show that the present model performs better

than the standard k - e model in almost all the cases tested. The well-known spreading

rate anomaly of planar and round jets is completely removed. In addition, the new model

dissipation rate equation is expected to enhance the numerical stability in turbulent flow

calculations, especially, when it is used in conjunction with more advanced closure schemes,

14



such as second order closures. We have also just finished implementing the present model

dissipation rate equation into the LRR 27 second order closure. Preliminary results show

that the initial decay behavior of k and s and the effect of rotation on both k and 6 for

initially isotropic rotating homogeneous shear flows are well captured.
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